题目内容
已知定点A(-2,0),动点B是圆(F为圆心)上一点,线段AB的垂直平分线交BF于P.
(1)求动点P的轨迹方程;
(2)是否存在过点E(0,-4)的直线l交P点的轨迹于点R,T,且满足 (O为原点),若存在,求直线l的方程,若不存在,请说明理由.
(1)求动点P的轨迹方程;
(2)是否存在过点E(0,-4)的直线l交P点的轨迹于点R,T,且满足 (O为原点),若存在,求直线l的方程,若不存在,请说明理由.
(1)(2)
(1)由题意:∵|PA|=|PB|且|PB|+|PF|=r=8
∴|PA|+|PF|=8>|AF|
∴P点轨迹为以A、F为焦点的椭圆…………………………3分
设方程为
………………………5分
(2)假设存在满足题意的直线l,其斜率存在,设为k,设
∴|PA|+|PF|=8>|AF|
∴P点轨迹为以A、F为焦点的椭圆…………………………3分
设方程为
………………………5分
(2)假设存在满足题意的直线l,其斜率存在,设为k,设
练习册系列答案
相关题目