ÌâÄ¿ÄÚÈÝ

1£®ÒÑÖª$\overrightarrow{a}$=£¨x+1£¬y£©£¬$\overrightarrow{b}$=£¨x-1£¬y£©£¬ÆäÖÐx£¬y¡ÊR£¬ÇÒ|$\overrightarrow{a}$|+|$\overrightarrow{b}$|=4£¬¶¯µãP£¨x£¬y£©µÄ¹ì¼£ÎªL£®
£¨¢ñ£©Ç󶯵ãP£¨x£¬y£©µÄ¹ì¼£·½³Ì£»
£¨¢ò£©ÒÑÖªµãF1£¨-1£¬0£©£¬¹ýµãF2£¨1£¬0£©µÄÖ±ÏßlÓë¹ì¼£LÏཻÓÚA£¬BÁ½µã£¬ÎÊ¡÷ABF1µÄÄÚÇÐÔ²µÄÃæ»ýÊÇ·ñ´æÔÚ×î´óÖµ£¿Èô´æÔÚ£¬Çó³öÕâ¸ö×î´óÖµ¼°Ö±ÏßlµÄ·½³Ì£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨¢ñ£©Ö±½ÓÓÉÒÑÖª½áºÏ|$\overrightarrow{a}$|+|$\overrightarrow{b}$|=4£¬ÇóµÃ¶¯µãP£¨x£¬y£©µÄ¹ì¼£·½³Ì£»
£¨¢ò£©°Ñ¡÷ABF1µÄÄÚÇÐÔ²µÄÃæ»ý×î´óת»¯Îª¡÷ABF1µÄÃæ»ý×î´ó£¬Éè³öÖ±ÏßlµÄ·½³ÌΪx=my+1£¬ÁªÁ¢Ö±Ïß·½³ÌºÍÍÖÔ²·½³Ì£¬×ª»¯Îª¹ØÓÚyµÄÒ»Ôª¶þ´Î·½³Ì£¬Óɺ¯ÊýµÄµ¥µ÷ÐÔÇóµÃʹ¡÷ABF1µÄÃæ»ý×î´óµÄmÖµ£¬½øÒ»²½ÇóµÃÄÚÇÐÔ²Ãæ»ýµÄ×î´óÖµ£®

½â´ð ½â£º£¨¢ñ£©ÓÉ$\overrightarrow{a}$=£¨x+1£¬y£©£¬$\overrightarrow{b}$=£¨x-1£¬y£©£¬ÇÒ|$\overrightarrow{a}$|+|$\overrightarrow{b}$|=4£¬
µÃ£º$\sqrt{£¨x+1£©^{2}+{y}^{2}}+\sqrt{£¨x-1£©^{2}+{y}^{2}}=4$£®
ÕûÀíµÃ£º$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$£»
£¨¢ò£©Èô¡÷ABF1µÄÄÚÇÐÔ²µÄÃæ»ý×î´ó£¬¼´ÄÚÇÐÔ²µÄ°ë¾¶×î´ó£¬
¡ß¡÷ABF1µÄÖܳ¤ÎªÍÖÔ²$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$µÄ³¤Ö᳤µÄ2±¶Îª¶¨Öµ£¬
Ôò¡÷ABF1µÄÃæ»ý×î´ó£®
ÉèÖ±ÏßlµÄ·½³ÌΪx=ty+1£®
ÁªÁ¢$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\\{x=my+1}\end{array}\right.$£¬µÃ£º£¨3m2+4£©y2+6my-9=0£®
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
Ôò${y}_{1}+{y}_{2}=-\frac{6m}{3{m}^{2}+4}£¬{y}_{1}{y}_{2}=-\frac{9}{3{m}^{2}+4}$£®
¡à$|{y}_{1}-{y}_{2}|=\sqrt{£¨{y}_{1}+{y}_{2}£©^{2}-4{y}_{1}{y}_{2}}$=$\sqrt{£¨-\frac{6m}{3{m}^{2}+4}£©^{2}-4¡Á£¨-\frac{9}{3{m}^{2}+4}£©}$
=$\sqrt{\frac{36{m}^{2}+36£¨3{m}^{2}+4£©}{£¨3{m}^{2}+4£©^{2}}}$=$\sqrt{\frac{144£¨{m}^{2}+1£©}{[3£¨{m}^{2}+1£©+1]^{2}}}$=$\sqrt{\frac{144}{9£¨{m}^{2}+1£©+\frac{1}{{m}^{2}+1}+6}}$£®
µ±m2+1=1£¬¼´m=0ʱ£¬|y1-y2|max=3£®
´Ëʱ¡÷ABF1µÄÃæ»ý×î´ó£¬×î´óֵΪ$\frac{1}{2}¡Á2¡Á3=3$£®
Éè¡÷ABF1µÄÄÚÇÐÔ²µÄ°ë¾¶Îªr£¬Ôò$\frac{1}{2}¡Á4¡Á2r=3$£¬r=$\frac{3}{4}$£¬
ÄÚÇÐÔ²µÄÃæ»ýΪ$\frac{9}{16}¦Ð$£¬´ËʱֱÏßlµÄ·½³ÌΪx=1£®

µãÆÀ ±¾Ì⿼²éÓÉƽÃæÏòÁ¿ÇóÇúÏߵĹ켣·½³Ì£¬¿¼²éÁËÖ±ÏߺÍԲ׶ÇúÏßµÄλÖùØϵ£¬¿¼²é¼ÆËãÄÜÁ¦£¬ÊÇÖиߵµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø