题目内容
(本小题满分14分)
已知函数![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002318740936.png)
是奇函数.
(1)求实数
的值;
(2)判断函数
在
上的单调性,并给出证明;
(3)当
时,函数
的值域是
,求实数
与
的值。
已知函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002318740936.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002318755755.png)
(1)求实数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002318771337.png)
(2)判断函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002318787447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002318802510.png)
(3)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002318818678.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002318787447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002318802510.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002318849283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002318865297.png)
(1)
(舍去)或
.此时函数定义域为
,关于原点对称。
(2)由单调函数的定义得:当
时,
在
上是减函数.
同理当
时,
在
上是增函数.
(3)
,
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002318880386.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002318896395.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002318911720.png)
(2)由单调函数的定义得:当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002318927370.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002318787447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002318802510.png)
同理当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002318974437.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002318787447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002318802510.png)
(3)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002319036534.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002319052357.png)
试题分析:(1)由已知条件得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002319067633.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002319114266.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002319130195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240023191451020.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002319177741.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002319130195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002319208610.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002319114266.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002319130195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002319270453.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002318880386.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002318896395.png)
此时函数定义域为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002318911720.png)
(2)由(1)得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002319333837.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002319348861.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002319130195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002319379511.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240023193951294.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002319130195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002319426426.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002318927370.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002319457681.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002319473679.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002319130195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002318927370.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002318787447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002318802510.png)
同理当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002318974437.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002318787447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002318802510.png)
(3)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002319598235.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002318787447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002318911720.png)
① 当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002319645583.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002318974437.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002319130195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002318787447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002319707575.png)
要使值域为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002318802510.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240023197541029.png)
②当时
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002319769569.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002319785414.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002319130195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002318787447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002319707575.png)
要使
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002318787447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002318802510.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240023198791019.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002319130195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002319036534.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002319052357.png)
点评:综合题,本题以复合对数函数为载体,综合考查对数函数的性质,函数的单调性,函数的奇偶性,对考生数学式子变形能力要求较高。
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目