题目内容

(本题满分14分
已知椭圆的离心率为,以原点为圆心,
椭圆的短半轴长为半径的圆与直线相切.
⑴求椭圆C的方程;
⑵设是椭圆上关于轴对称的任意两个不同的点,连结交椭圆
于另一点,求直线的斜率的取值范围;
⑶在⑵的条件下,证明直线轴相交于定点.


⑶见解析
本题考查椭圆的几何性质,考查椭圆的标准方程,解题的关键是确定几何量之间的关系,利用直线与椭圆联立,结合韦达定理求解
(1)根据椭圆的性质,离心率得到参数a,c的关系,然后利用线与圆相切得到参数b的值,进而得到椭圆的方程。
(2)设出直线与椭圆的方程联立方程组,结合韦达定理,和判别式大于零得到直线的斜率的范围。
(3)表示直线ME的方程,以及结合点的坐标的对称关系,得到k的关系式,进而得到直线轴相交于定点
解:⑴由题意知
所以,即
又因为,所以
故椭圆的方程为.-----------4分
⑵由题意知直线的斜率存在,设直线的方程为  ①
联立消去得:

不合题意,
所以直线的斜率的取值范围是.---8分
⑶设点,则
直线的方程为
,得
代入整理,得.     ②
由得①代入②整理,得
所以直线轴相交于定点.         ----------------14分
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网