题目内容
(本小题满分14分)已知椭圆
:
的离心率是
,其左、右顶点分别为
,
,
为短轴的端点,△
的面积为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)
为椭圆
的右焦点,若点
是椭圆
上异于
,
的任意一点,直线
,
与直线
分别交于
,
两点,证明:以
为直径的圆与直线
相切于点
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223734068313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232237340841105.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223734100338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223734131332.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223734162354.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223734178309.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223734193529.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223734224426.png)
(Ⅰ)求椭圆
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223734068313.png)
(Ⅱ)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223734256353.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223734068313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223734302289.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223734068313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223734131332.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223734162354.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223734380416.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223734396429.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223734427368.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223734443399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223734474357.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223734490513.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223734505421.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223734256353.png)
(Ⅰ)
.(Ⅱ)证明:见解析。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223734552707.png)
本试题主要是考查了椭圆的方程的求解,以及直线与椭圆的位置关系的综合运用,
(1)运用椭圆的性质得到椭圆的参数a,b,c的关系式,从而得到椭圆的方程。
(2)设出直线方程与椭圆的方程联立方程组,然后结合韦达定理和向量的数量积公式得到结论。
(Ⅰ)解:由已知
解得
,
. …4分
故所求椭圆方程为
. …………5分
(Ⅱ)证明:由(Ⅰ)知
,
,
.设
,则
. 于是直线
方程为
,令
,得
;所以![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223734880455.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223734911284.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223734926668.png)
,同理![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223734973410.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223734911284.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223735020625.png)
. 所以![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223735051575.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223735082240.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223735098317.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223734926668.png)
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223735160533.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223735082240.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223735098317.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223735020625.png)
.所以 ![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223735270754.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223735082240.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223735098317.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223734926668.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223734942239.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223735379164.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223735082240.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223735098317.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223735020625.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223734942239.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232237354721025.png)
.
所以
,点
在以
为直径的圆上. …………10分
设
的中点为
,则![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223735644466.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223735660860.png)
. …………11分
又![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223735706482.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223735722358.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223735660860.png)
,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223735784864.png)
所以![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223735816610.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223735722358.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223735660860.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223734942239.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232237358941388.png)
.
所以
. 因为
是以
为直径的圆的半径,
为圆心,
,
故以
为直径的圆与直线
相切于右焦点. …………14分
(1)运用椭圆的性质得到椭圆的参数a,b,c的关系式,从而得到椭圆的方程。
(2)设出直线方程与椭圆的方程联立方程组,然后结合韦达定理和向量的数量积公式得到结论。
(Ⅰ)解:由已知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232237345681300.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223734599386.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223734614450.png)
故所求椭圆方程为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223734552707.png)
(Ⅱ)证明:由(Ⅰ)知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223734661639.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223734724622.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223734739574.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223734770958.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223734786774.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223734380416.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223734833907.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223734427368.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223734864842.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223734880455.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223734911284.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223734926668.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223734942239.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223734973410.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223734911284.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223735020625.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223734942239.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223735051575.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223735082240.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223735098317.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223734926668.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223734942239.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223735160533.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223735082240.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223735098317.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223735020625.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223734942239.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223735270754.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223735082240.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223735098317.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223734926668.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223734942239.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223735379164.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223735082240.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223735098317.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223735020625.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223734942239.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232237354721025.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232237355041398.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232237355191115.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223735535733.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223734256353.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223734490513.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223734490513.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223735613318.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223735644466.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223735660860.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223734942239.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223735706482.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223735722358.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223735660860.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223734942239.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223735784864.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223735816610.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223735722358.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223735660860.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223734942239.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232237358941388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232237359092056.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223735940586.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223735972439.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223734490513.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223735613318.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223735940586.png)
故以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223734490513.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223734505421.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目