题目内容
如图,设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左、右焦点分别为F1,F2,线段OF1,OF2的中点分别为B1,B2,且△AB1B2是面积为4的直角三角形.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240141559233555.png)
(1)求该椭圆的离心率和标准方程;
(2)过B1作直线l交椭圆于P,Q两点,使PB2⊥QB2,求直线l的方程.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240141559233555.png)
(1)求该椭圆的离心率和标准方程;
(2)过B1作直线l交椭圆于P,Q两点,使PB2⊥QB2,求直线l的方程.
(1)
+
=1,e=
;(2) x+2y+2=0和x-2y+2=0.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014155939502.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014155970460.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014155985486.png)
试题分析:(1)设所求椭圆的标准方程为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014156095444.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014156110476.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014156141369.png)
结合c2=a2-b2,得4b2=a2-b2,故a2=5b2,c2=4b2,∴离心率e=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014156141369.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014155985486.png)
在Rt△AB1B2中,OA⊥B1B2,故S△AB1B2=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014156204338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014156141369.png)
由题设条件S△AB1B2=4,得b2=4,从而a2=5b2=20.
因此所求椭圆的标准方程为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014155939502.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014155970460.png)
(2)由(1),知B1(-2,0),B2(2,0).由题意,知直线l的倾斜角不为0,故可设直线l的方程为x=my-2,代入椭圆方程,得(m2+5)y2-4my-16=0.
设P(x1,y1),Q(x2,y2),则y1,y2是上面方程的两根,因此y1+y2=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014156251626.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014156282625.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014156313434.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014156329465.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014156313434.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014156329465.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014156391793.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014156422668.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014156438769.png)
由PB2⊥QB1,得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014156313434.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824014156329465.png)
∴满足条件的直线有两条,其方程分别为x+2y+2=0和x-2y+2=0.
点评:直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现,主要涉及位置关系的判定,弦长问题、最值问题、对称问题、轨迹问题等.突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目