题目内容
椭圆的左、右焦点分别为、,若椭圆上恰好有6个不同的点,使得为等腰三角形,则椭圆的离心率的取值范围是( )
A. | B. | C. | D. |
D
试题分析:解:
①当点P与短轴的顶点重合时,△F1F2P构成以F1F2为底边的等腰三角形,此种情况有2个满足条件的等腰△F1F2P;②当△F1F2P构成以F1F2为一腰的等腰三角形时,以F2P作为等腰三角形的底边为例,∵F1F2=F1P,∴点P在以F1为圆心,半径为焦距2c的圆上,因此,当以F1为圆心,半径为2c的圆与椭圆C有2交点时,存在2个满足条件的等腰△F1F2P,此时a-c<2c,解得a<3c,所以离心率e>当e=时,△F1F2P是等边三角形,与①中的三角形重复,故e≠同理,当F1P为等腰三角形的底边时,在e> 且e≠ 时也存在2个满足条件的等腰△F1F2P,这样,总共有6个不同的点P使得△F1F2P为等腰三角形,综上所述,离心率的取值范围是:e∈,故选D.
点评:本题给出椭圆的焦点三角形中,共有6个不同点P使得△F1F2P为等腰三角形,求椭圆离心率e的取值范围.着重考查了椭圆的标准方程和简单几何性质等知识,属于基础题
练习册系列答案
相关题目