题目内容
【题目】已知集合A={x|y= },B={x|x<﹣4或x>2}
(1)若m=﹣2,求A∩(RB);
(2)若A∪B=B,求实数m的取值范围.
【答案】
(1)解:m=﹣2,A={x|y= }={x|x≤﹣1},RB={x|﹣4≤x≤2},
∴A∩(RB)={x|﹣4≤x≤﹣1};
(2)解:若A∪B=B,则AB,
∵A={x|x≤1+m},B={x|x<﹣4或x>2}
∴1+m<﹣4,
∴m<﹣5.
【解析】(1)若m=﹣2,A={x|y= }={x|x≤﹣1},RB={x|﹣4≤x≤2},即可求A∩(RB);(2)若A∪B=B,AB,利用A={x|x≤1+m},B={x|x<﹣4或x>2},即可求实数m的取值范围.
【考点精析】本题主要考查了交、并、补集的混合运算的相关知识点,需要掌握求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法才能正确解答此题.
练习册系列答案
相关题目