ÌâÄ¿ÄÚÈÝ
20£®ÏÂÃæ4¸ö½áÂÛÖУ¬ÕýÈ·½áÂ۵ĸöÊýÊÇ£¨¡¡¡¡£©¢ÙÈôÊýÁÐ{an}ÊǵȲîÊýÁУ¬ÇÒam+an=as+at£¨m£¬n£¬s£¬t¡ÊN*£©£¬Ôòm+n=s+t£»
¢ÚÈôSnÊǵȲîÊýÁÐ{an}µÄÇ°nÏîµÄºÍ£¬ÔòSn£¬S2n-Sn£¬S3n-S2n³ÉµÈ²îÊýÁУ»
¢ÛÈôSnÊǵȱÈÊýÁÐ{an}µÄÇ°nÏîµÄºÍ£¬ÔòSn£¬S2n-Sn£¬S3n-S2n³ÉµÈ±ÈÊýÁУ»
¢ÜÈôSnÊǵȱÈÊýÁÐ{an}µÄÇ°nÏîµÄºÍ£¬ÇÒSn=Aqn+B£»£¨ÆäÖÐA¡¢BÊÇ·ÇÁã³£Êý£¬n¡ÊN*£©£¬ÔòA+BΪÁ㣮
A£® | 4 | B£® | 3 | C£® | 2 | D£® | 1 |
·ÖÎö ¢ÙÈ¡ÊýÁÐ{an}Ϊ³£ÊýÁУ¬¼´¿ÉÍƳö¸ÃÃüÌâÊǼÙÃüÌ⣻
¢Ú¸ù¾ÝµÈ²îÊýÁеÄÐÔÖÊ£¬ÍƳö2£¨S2n-Sn£©=Sn+£¨S3n-S2n£©£¬¼´¿ÉµÃµ½Sn£¬S2n-Sn£¬S3n-S2n£¬¡ÎªµÈ²îÊýÁУ»
¢ÛÀûÓõȱÈÊýÁеÄÌØÀýÅжÏÑ¡ÏîÊÇ·ñÕýÈ·£»
¢Ü¸ù¾ÝÊýÁеÄÇ°nÏîµÄºÍ¼õÈ¥µÚn-1ÏîµÄºÍµÃµ½ÊýÁеĵÚnÏîµÄͨÏʽ£¬¼´¿ÉµÃµ½´ËµÈ±ÈÊýÁеÄÊ×ÏîÓ빫±È£¬¸ù¾ÝÊ×ÏîºÍ¹«±È£¬ÀûÓõȱÈÊýÁеÄÇ°nÏîºÍµÄ¹«Ê½±íʾ³öÇ°nÏîµÄºÍ£¬½áºÏµÈ±ÈÊýÁÐÇ°nÏîºÍ¹«Ê½·ÖÎö¿ÉµÃ½áÂÛÊÇ·ñÕýÈ·£®
½â´ð ½â£º¢ÙÈ¡ÊýÁÐ{an}Ϊ³£ÊýÁУ¬¶ÔÈÎÒâm¡¢n¡¢s¡¢t¡ÊN*£¬¶¼ÓÐam+an=as+at£¬¹Ê´í£»
¢ÚÉèµÈ²îÊýÁÐanµÄÊ×ÏîΪa1£¬¹«²îΪd£¬
ÔòSn=a1+a2+¡+an£¬S2n-Sn=an+1+an+2+¡+a2n=a1+nd+a2+nd+¡+an+nd=Sn+n2d£¬
ͬÀí£ºS3n-S2n=a2n+1+a2n+2+¡+a3n=an+1+an+2+¡+a2n+n2d=S2n-Sn+n2d£¬
¡à2£¨S2n-Sn£©=Sn+£¨S3n-S2n£©£¬
¡àSn£¬S2n-Sn£¬S3n-S2nÊǵȲîÊýÁУ®´ËÑ¡ÏîÕýÈ·£»
¢ÛÉèan=£¨-1£©n£¬
ÔòS2=0£¬S4-S2=0£¬S6-S4=0£¬
¡à´ËÊýÁв»ÊǵȱÈÊýÁУ¬´ËÑ¡Ïî´í£»
¢ÜÒòΪan=Sn-Sn-1=£¨Aqn+B£©-£¨Aqn-1+B£©=Aqn-Aqn-1=£¨Aq-1£©•qn-1£¬
ËùÒÔ´ËÊýÁÐΪÊ×ÏîÊÇAq-1£¬¹«±ÈΪqµÄµÈ±ÈÊýÁУ¬
ÔòSn=$\frac{£¨Aq-1£©£¨1-{q}^{n}£©}{1-q}$£¬
ËùÒÔB=$\frac{Aq-1}{1-q}$£¬A=-$\frac{Aq-1}{1-q}$£¬¡àA+B=0£¬¹ÊÕýÈ·£»
¼´ÓТڢÜÕýÈ·£®
¹ÊÑ¡£ºC£®
µãÆÀ ´ËÌ⿼²éѧÉúÁé»îÔËÓõȲµÈ±ÈÊýÁеÄÐÔÖÊ»¯¼òÇóÖµ£¬ÊÇÒ»µÀ×ÛºÏÌ⣮ÊôÖеµÌ⣮
A£® | ³äÒªÌõ¼þ | B£® | ³ä·Ö·Ç±ØÒªÌõ¼þ | ||
C£® | ±ØÒª·Ç³ä·ÖÌõ¼þ | D£® | ¼È·Ç³ä·ÖÓַDZØÒªÌõ¼þ |
A£® | £¨1£¬1£¬2£© | B£® | £¨2£¬2£¬1£© | C£® | £¨1£¬1£¬1£© | D£® | $£¨1\;£¬\;1\;£¬\;\frac{1}{2}£©$ |
A£® | 60¡ã | B£® | 60¡ã»ò120¡ã | C£® | 30¡ã | D£® | 30¡ã»ò150¡ã |