题目内容
3.研究直线y=mx+1(x∈R)在矩阵$[\begin{array}{cc}1&0\\ 0&-1\end{array}\right.]$对应的变换作用下得到的图形.分析 设P(x0,y0)为直线y=mx+1上任意一点,利用$[\begin{array}{l}{1}&{0}\\{0}&{-1}\end{array}]$$[\begin{array}{l}{{x}_{0}}\\{{y}_{0}}\end{array}]$=$[\begin{array}{l}{x}\\{y}\end{array}]$,可得$\left\{\begin{array}{l}{{x}_{0}=x}\\{{y}_{0}=-y}\end{array}\right.$,代入原直线方程,整理即得结论.
解答 解:设P(x0,y0)为直线y=mx+1上任意一点,
它在矩阵在矩阵$[\begin{array}{l}{1}&{0}\\{0}&{-1}\end{array}]$对应的变换作用下对应的变换作用下得到点Q(x,y),
由$[\begin{array}{l}{1}&{0}\\{0}&{-1}\end{array}]$$[\begin{array}{l}{{x}_{0}}\\{{y}_{0}}\end{array}]$=$[\begin{array}{l}{x}\\{y}\end{array}]$,得$\left\{\begin{array}{l}{{x}_{0}=x}\\{-{y}_{0}=y}\end{array}\right.$,解得$\left\{\begin{array}{l}{{x}_{0}=x}\\{{y}_{0}=-y}\end{array}\right.$,
∵y0=mx0+1,∴-y=mx+1,即y=-mx-1,
故直线y=mx+1(x∈R)在矩阵$[\begin{array}{l}{1}&{0}\\{-1}&{0}\end{array}]$对应的变换作用下得到的图形是过点(0,-1)且斜率为-m的直线.
点评 本题考查矩阵的变换,注意解题方法的积累,属于中档题.
A. | ac≥b | B. | ab≥c | C. | bc≥a | D. | ab≤c |
A. | (-3,-2] | B. | [-2,-1) | C. | [-1,2) | D. | [2,3) |
A. | 2 | B. | 2.5 | C. | 2$\sqrt{3}$-1 | D. | 2$\sqrt{2}$+1 |