题目内容

【题目】设F1 , F2分别是椭圆E:x2+ =1(0<b<1)的左、右焦点,过点F1的直线交椭圆E于A、B两点,若|AF1|=3|F1B|,AF2⊥x轴,则椭圆E的方程为

【答案】x2+ =1
【解析】解:由题意,F1(﹣c,0),F2(c,0),AF2⊥x轴,∴|AF2|=b2
∴A点坐标为(c,b2),
设B(x,y),则
∵|AF1|=3|F1B|,
∴(﹣c﹣c,﹣b2)=3(x+c,y)
∴B(﹣ c,﹣ b2),
代入椭圆方程可得
∵1=b2+c2
∴b2= ,c2=
∴x2+ =1.
所以答案是:x2+ =1.
【考点精析】通过灵活运用椭圆的标准方程,掌握椭圆标准方程焦点在x轴:,焦点在y轴:即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网