题目内容
【题目】已知
(1)求函数的极值;
(2)设,对于任意,总有成立,求实数的取值范围.
【答案】(1) 的极小值为: ,极大值为: (2)
【解析】试题分析:(1)先求函数的定义域,然后对函数求导,利用导数求得函数的单调区间,进而求得极值.(2)由(1)得到函数的最大值为,则只需.求出函数的导数,对分成两类,讨论函数的单调区间和最小值,由此求得的取值范围.
试题解析:
(1)
所以的极小值为: ,极大值为: ;
(2) 由(1)可知当时,函数的最大值为
对于任意,总有成立,等价于恒成立,
①时,因为,所以,即在上单调递增, 恒成立,符合题意.
②当时,设, ,
所以在上单调递增,且,则存在,使得
所以在上单调递减,在上单调递增,又,
所以不恒成立,不合题意.
综合①②可知,所求实数的取值范围是.
练习册系列答案
相关题目
【题目】年微信用户数量统计显示,微信注册用户数量已经突破亿.微信用户平均年龄只有岁, 的用户在岁以下, 的用户在岁之间,为调查大学生这个微信用户群体中每人拥有微信的数量,现在从北京大学生中随机抽取位同学进行了抽样调查,结果如下:
微信群数量 | 频数 | 频率 |
至个 | ||
至个 | ||
至个 | ||
至个 | ||
个以上 | ||
合计 |
()求, , 的值.
()若从位同学中随机抽取人,求这人中恰有人微信群个数超过个的概率.
()以这个人的样本数据估计北京市的总体数据且以频率估计概率,若从全市大学生中随机抽取人,记表示抽到的是微信群个数超过个的人数,求的分布列和数学期望.