题目内容
【题目】已知函数,分别是定义在上的偶函数和奇函数,且.
(1)求函数,的解析式;
(2)若对任意,不等式恒成立,求实数的最大值;
(3)设,若函数与的图象有且只有一个公共点,求的取值范围.
【答案】(1),;(2)4;(3)或
【解析】
(1)用替换再利用奇偶性得到,与已知条件联立即可得到函数,的解析式;
(2)将代入,换元思想,分离参数,构造函数,求函数最小值,即可得实数的最大值;
(3)根据题意,换元后转化为方程有且只有一个正根,再对讨论即可得出的取值范围.
解:(1),用代替得,
则,
解方程得:,.
(2)对任意恒成立,
令,,因为令在单调递增,故
则对恒成立
当时, 故,即
(3)由题:方程有且只有一个根
即有且只有一个根,
令,因为在上单调递增,且
故方程(*式)有且只有一个正根
①当时,方程有唯一根,合题
②当时,方程变形为,解得两根为,
因为(*式)有且只有一个正根,故或,解得或
综上:的取值范围为或
练习册系列答案
相关题目