题目内容
【题目】如图,在四棱锥中,四边形为梯形, ,且, 是边长为2的正三角形,顶点在上的射影为点,且, , .
(1)证明:平面平面;
(2)求二面角的余弦值.
【答案】(1)见解析(2)
【解析】试题分析:(1) 取的中点为,连接利用直角三角形的性质,可分别求出的值,由勾股定理得.可得面,可证平面平面;(2)以所在直线为轴, 所在直线为轴,过点作平面的垂线为轴,建立空间直角坐标系,写出各点坐标,求出两个半平面的法向量,利用法向量的夹角与二面角的夹角的关系,可求二面角的余弦值.
试题解析:(Ⅰ)证明:由顶点在上投影为点,可知, .
取的中点为,连结, .
在中, , ,所以.
在中, , ,所以.
所以, ,即.
∵
∴面.
又面,所以面面.
(Ⅱ)由(Ⅰ)知, , ,且
所以 面,且面.以所在直线为轴, 所在直线为轴,点作平面的垂线为轴,建立空间直角坐标系,如图所示:
, , ,
设平面, 的法向量分别为,则
,则,
,则
,
,
所以二面角的余弦值为.
练习册系列答案
相关题目