题目内容

10.已知AC=BC=$\sqrt{2}$,CD=$\frac{\sqrt{3}}{2}$,AB=BE=EA=2,CD⊥面ABC,面ABE⊥面ABC.
(1)求证:AB⊥面CDE;
(2)求二面角A-DE-B所成角的余弦值;
(3)在线段AE上是否存在点P使CP⊥BE,若存在,确定P点位置;若不存在,请说明理由.

分析 (1)取AB的中点M,连接EM,CM.由正三角形的性质可得:EM⊥AB.又CM⊥AB,可得AB⊥平面CME,AB⊥EC.由线面垂直的性质可得:DC⊥AB,即可证明.
(2)由勾股定理逆定理可得:AC⊥BC.以点C为原点,CA,CB,CD分别为x轴,y轴,z轴,建立空间直角坐标系,设$\overrightarrow{n}$=(x,y,z)是平面ADE的法向量,则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AD}=0}\\{\overrightarrow{n}•\overrightarrow{DE}=0}\end{array}\right.$,可得$\overrightarrow{n}$,设$\overrightarrow{m}$为平面BDE的法向量,利用$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{BD}=0}\\{\overrightarrow{m}•\overrightarrow{DE}=0}\end{array}\right.$,可得$\overrightarrow{m}$,利用$cos<\overrightarrow{m},\overrightarrow{n}>$=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$即可得出.
(3)设$\overrightarrow{AP}=λ\overrightarrow{AE}$=$(-\frac{\sqrt{2}}{2}λ,\frac{\sqrt{2}}{2}λ,\sqrt{3}λ)$,可得$\overrightarrow{CP}$,由$\overrightarrow{CP}•\overrightarrow{BE}$=0,解出λ即可判断出.

解答 (1)证明:取AB的中点M,连接EM,CM.
∵△ABE为正三角形,
∴EM⊥AB.
又AC=BC,∴CM⊥AB,EM∩MC=M,
∴AB⊥平面CME.AB⊥EC,
∵CD⊥面ABC,
∴DC⊥AB,EC∩DC=C,
∴AB⊥面CDE.
(2)解:∵AC=BC=$\sqrt{2}$,AB=2,∴AC2+BC2=AB2
∴AC⊥BC.
以点C为原点,CA,CB,CD分别为x轴,y轴,z轴,建立空间直角坐标系,D$(0,0,\frac{\sqrt{3}}{2})$,A$(\sqrt{2},0,0)$,B$(0,\sqrt{2},0)$,M$(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2},0)$,
E$(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2},\sqrt{3})$.$\overrightarrow{AD}$=$(-\sqrt{2},0,\frac{\sqrt{3}}{2})$,$\overrightarrow{DE}$=$(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2},\frac{\sqrt{3}}{2})$.$\overrightarrow{BD}$=$(0,-\sqrt{2},\frac{\sqrt{3}}{2})$.
设$\overrightarrow{n}$=(x,y,z)是平面ADE的法向量,则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AD}=0}\\{\overrightarrow{n}•\overrightarrow{DE}=0}\end{array}\right.$,
∴$\left\{\begin{array}{l}{\sqrt{2}x+\frac{\sqrt{3}}{2}z=0}\\{\frac{\sqrt{2}}{2}x+\frac{\sqrt{2}}{2}y+\frac{\sqrt{3}}{2}z=0}\end{array}\right.$,取$\overrightarrow{n}$=$(\frac{\sqrt{3}}{2},-\frac{3\sqrt{3}}{2},\sqrt{2})$,
设$\overrightarrow{m}$为平面BDE的法向量,利用$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{BD}=0}\\{\overrightarrow{m}•\overrightarrow{DE}=0}\end{array}\right.$,可得$\overrightarrow{m}$=$(-\frac{3\sqrt{3}}{2},\frac{\sqrt{3}}{2},\sqrt{2})$,
∵$cos<\overrightarrow{m},\overrightarrow{n}>$=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$=-$\frac{5}{19}$,∴二面角A-DE-B所成角的余弦值为$\frac{5}{19}$.
(3)假设$\overrightarrow{AP}=λ\overrightarrow{AE}$=$(-\frac{\sqrt{2}}{2}λ,\frac{\sqrt{2}}{2}λ,\sqrt{3}λ)$,
∴$\overrightarrow{CP}$=$(\sqrt{2}-\frac{\sqrt{2}}{2}λ,\frac{\sqrt{2}}{2}λ,\sqrt{3}λ)$,$\overrightarrow{BE}$=$(\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2},\sqrt{3})$,
由$\overrightarrow{CP}•\overrightarrow{BE}$=1-$\frac{1}{2}λ$-$\frac{1}{2}λ$+3λ=0,解得λ=$-\frac{1}{2}$,
∴在线段AE上不存在点P使CP⊥BE.

点评 本题考查了线面面面垂直的判定与性质定理、利用法向量夹角求空间角,考查了空间想象能力、推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网