题目内容

18.已知平行六面体ABCD-A′B′C′D′中,AB=4,AD=3,AA′=5,∠BAD=90°,∠BAA′=∠DAA′=60°,则AC′等于(  )
A.85B.$\sqrt{85}$C.$5\sqrt{2}$D.50

分析 直接利用$\overrightarrow{AC′}=\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CC′}$=$\overrightarrow{AB}+\overrightarrow{AD}+\overrightarrow{AA′}$,然后利用平面向量的数量积进行运算.

解答 解:如图,

可得$\overrightarrow{AC′}=\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CC′}$=$\overrightarrow{AB}+\overrightarrow{AD}+\overrightarrow{AA′}$,
故$|\overrightarrow{AC′}{|}^{2}=(\overrightarrow{AB}+\overrightarrow{AD}+\overrightarrow{AA′})^{2}$=$|\overrightarrow{AB}{|}^{2}+|\overrightarrow{AD}{|}^{2}+|\overrightarrow{AA′}{|}^{2}$$+2(\overrightarrow{AB}•\overrightarrow{AD}+\overrightarrow{AB}•\overrightarrow{AA′}+\overrightarrow{AD}•\overrightarrow{AA′})$
=42+32+52+2(4×3×0+4×5×$\frac{1}{2}$+3×5×$\frac{1}{2}$)=85.
∴AC′=$\sqrt{85}$.
故选:B.

点评 本题考查了利用平面向量求解立体几何问题,考查了平面向量的数量积运算,是基础的计算题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网