题目内容
7.已知函数f(x)=x3-x2+mx+2,若对任意x1,x2∈R,均满足(x1-x2)[f(x1)-f(x2)]>0,则实数m的取值范围是[$\frac{1}{3}$,+∞).分析 由函数的单调性的定义可得函数f(x)在R上为增函数,即有f′(x)≥0在R上恒成立.由二次不等式恒成立问题的解法,可得m的不等式,即可得到范围.
解答 解:对任意x1,x2∈R,均满足(x1-x2)[f(x1)-f(x2)]>0,
即函数f(x)在R上为增函数,
即有f′(x)≥0在R上恒成立.
由f(x)=x3-x2+mx+2的导数为f′(x)=3x2-2x+m,
由3x2-2x+m≥0恒成立,
可得判别式△=4-12m≤0,
解得m≥$\frac{1}{3}$,
则所求m的范围是[$\frac{1}{3}$,+∞).
故答案为:[$\frac{1}{3}$,+∞).
点评 本题考查函数的单调性的判断,主要考查运用导数判断单调性,同时考查二次不等式恒成立问题的解法,属于中档题和易错题.
练习册系列答案
相关题目
17.已知函数f(x)=$\frac{1}{3}{x^3}+2{x^2}$+2x,若存在满足0≤x0≤3的实数x0,使得曲线y=f(x)在点(x0,f(x0))处的切线与直线x+my-10=0垂直,则实数m的取值范围是(三分之一前有一个负号)( )
A. | [6,+∞) | B. | (-∞,2] | C. | [2,6] | D. | [5,6] |
15.某中学为了解学生“掷实心球”项目的整体情况,随机抽取男、女生各20名进行测试,记录的数据如下:
已知该项目评分标准为:
(Ⅰ)求上述20名女生得分的中位数和众数;
(Ⅱ)从上述20名男生中,有6人的投掷距离低于7.0米,现从这6名男生中随机抽取2名男生,求抽取的2名男生得分都是4分的概率.
男生投掷距离(单位:米) | 女生投掷距离(单位:米) | |
9 7 7 | 5 | 4 6 |
8 7 6 | 6 | 4 5 5 6 6 6 9 |
6 6 | 7 | 0 0 2 4 4 5 5 5 5 8 |
8 5 5 3 0 | 8 | 1 |
7 3 1 1 | 9 | |
2 2 0 | 10 |
男生投掷距离(米) | [5.4,6.0) | [6.0,6.6) | [6.6,7.4) | [7.4,7.8) | [7.8,8.6) | [8.6,10.0) | [10.0,+∞) | |
女生投掷距离(米) | [5.1;5.4) | [5.4,5.6) | [5.6,6.4) | [6.4,7.8) | [6.8,7.2) | [7.2,7.6) | [7.6,+∞) | |
个人得分(分) | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
(Ⅱ)从上述20名男生中,有6人的投掷距离低于7.0米,现从这6名男生中随机抽取2名男生,求抽取的2名男生得分都是4分的概率.
12.将正整数按如图排列,其中处于从左到右第m列从下到上第n行的数
记为A(m,n),如A(3,1)=4,A(4,2)=12,则A(10,3)
=69;A(1,n)=$\frac{n(n+1)}{2}$.
记为A(m,n),如A(3,1)=4,A(4,2)=12,则A(10,3)
=69;A(1,n)=$\frac{n(n+1)}{2}$.
16.设F1、F2分别为双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦点,双曲线上存在一点P,使得|PF1|+|PF2|=3b,|PF1|•|PF2|=$\frac{9}{4}$ab,则该双曲线的渐近线方程为( )
A. | y=±$\frac{4}{3}$x | B. | y=±$\frac{3}{4}$x | C. | y=±$\frac{5}{3}$x | D. | y=±$\frac{3}{5}$x |