题目内容

17.ABCD-A1B1C1D1是单位正方体,黑白两只蚂蚁从点A出发沿棱向前爬行,每爬完一条棱称为“爬完一段”.白蚂蚁爬行的路线是AA1→A1D1,…,黑蚂蚁爬行的路线是AB→BB1,…,它们都遵循如下规则:所爬行的第i+2段与第i段所在直线必须是异面直线(i∈N*),设黑白蚂蚁都爬完2015段后各自停止在正方体的某个顶点处,则此时黑白蚂蚁的距离是(  )
A.$\sqrt{2}$B.1C.0D.$\sqrt{3}$

分析 先根据题意,通过前几步爬行观察白蚂蚁与黑蚂蚁经过几段后又回到起点,得到每爬6步回到起点,周期为6.再计算黑蚂蚁与白蚂蚁爬完2015段后,各自达哪个点顶点处,利用正方体的性质和棱长为1加以计算,即可得到此时它们的距离.

解答 解:由题意,可得白蚂蚁爬行路线为AA1→A1D1→D1C1→C1C→CB→BA,即走过6段后又回到起点A,可以看作以6为周期,
同理,黑蚂蚁也是过6段后又回到起点A,以6为周期.
因此,白蚂蚁爬完2010段后回到A点,再爬5段:AA1→A1D1→D1C1→C1C→CB到达终点B,
同理可得黑蚂蚁爬完2010段后到回到A点,再爬5段:AB→BB1→B1C1→C1D1→D1D到达的终点D.
∵正方体ABCD-A1B1C1D1的棱长为1,∴BD=$\sqrt{2}$,
可得黑白二蚁走完第2015段后,它们的距离是$\sqrt{2}$.
故选:A.

点评 本题以一个创新例子为载体,考查正方体的性质和距离的计算,同时考查了归纳推理的能力、空间想象能力、异面直线的定义等相关知识,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网