题目内容
9.若$\overrightarrow{a}$=(2,3),$\overrightarrow{b}$=(-1,-2),$\overrightarrow{c}$=(2,1),则($\overrightarrow{a}$•$\overrightarrow{b}$)$\overrightarrow{c}$=(-16,-8),$\overrightarrow{a}$($\overrightarrow{b}$•$\overrightarrow{c}$)=(-8,-12).分析 利用平面向量的数量积和数乘的坐标运算解答.
解答 解:$\overrightarrow{a}$=(2,3),$\overrightarrow{b}$=(-1,-2),$\overrightarrow{c}$=(2,1),则($\overrightarrow{a}$•$\overrightarrow{b}$)$\overrightarrow{c}$=-8(2,1)=(-16,-8),
$\overrightarrow{a}$($\overrightarrow{b}$•$\overrightarrow{c}$)=-4(2,3)=(-8,-12);
故答案为:(-16,-8);(-8,-12).
点评 本题考查了平面向量的数量积和数乘的坐标运算,注意运算法则的运用;属于基础题.
练习册系列答案
相关题目
15.已知集合A={x|0<x<3},B={x|-1<x<3},则A∪B=( )
A. | {x|-1<x<3} | B. | {x|0<x<3} | C. | {x|x>-1} | D. | {x|x<3} |
16.已知P为△ABC所在平面内一点,且满足$\overrightarrow{AP}$=$\frac{1}{5}$$\overrightarrow{AC}$+$\frac{2}{5}$$\overrightarrow{AB}$,则△APB的面积与△APC的面积之比为( )
A. | $\frac{1}{2}$ | B. | 2 | C. | $\frac{1}{3}$ | D. | 3 |
17.ABCD-A1B1C1D1是单位正方体,黑白两只蚂蚁从点A出发沿棱向前爬行,每爬完一条棱称为“爬完一段”.白蚂蚁爬行的路线是AA1→A1D1,…,黑蚂蚁爬行的路线是AB→BB1,…,它们都遵循如下规则:所爬行的第i+2段与第i段所在直线必须是异面直线(i∈N*),设黑白蚂蚁都爬完2015段后各自停止在正方体的某个顶点处,则此时黑白蚂蚁的距离是( )
A. | $\sqrt{2}$ | B. | 1 | C. | 0 | D. | $\sqrt{3}$ |
19.从装有4个红球和3个黑球的口袋内任取3个球,那么互斥而不对立的事件是( )
A. | 至少有一个红球与都是黑球 | B. | 至少有一个红球与恰有一个黑球 | ||
C. | 至少有一个红球与至少有一个黑球 | D. | 恰有一个红球与恰有两个红球 |