题目内容
已知椭圆的中心为坐标原点O,焦点在x轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A、B两点,
与
=(3,-1)共线.
(1)求椭圆的离心率;
(2)设M为椭圆上任意一点,且
(
),证明
为定值.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002833860610.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002833876296.png)
(1)求椭圆的离心率;
(2)设M为椭圆上任意一点,且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002833907987.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002833923566.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002833938537.png)
(1)
;(2)![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002833985572.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002833954552.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002833985572.png)
试题分析:(1)设椭圆方程为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002834001766.png)
联立消去y可得:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240028340161047.png)
令A(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002834032445.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002834048480.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002834063865.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002834079935.png)
向量
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002833860610.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002834126429.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002834141455.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002833876296.png)
所以3(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002834141455.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002834126429.png)
即3(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002834126429.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002834126429.png)
4(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002834126429.png)
化简得:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002834250521.png)
所以离心率为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002834266689.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002834282466.png)
(2)椭圆
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002834001766.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002834500745.png)
设向量
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002834516433.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002834531388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002834032445.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002834578357.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002834048480.png)
(x,y)=λ(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002834032445.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002834048480.png)
即:x=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002834656588.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002834672610.png)
M在椭圆上,把坐标代入椭圆方程① 得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240028347031288.png)
直线AB的方程与椭圆方程联立得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240028340161047.png)
已证
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002834250521.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002834921642.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002834063865.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002834952445.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002834079935.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002834999514.png)
而A,B在椭圆上
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002835264785.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002835280794.png)
全部代入②整理可得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002833985572.png)
点评:典型题,涉及直线与椭圆的位置关系问题,通过联立方程组得到一元二次方程,应用韦达定理可实现整体代换,简化解题过程。
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目