题目内容
【题目】在四边形ABCD中, =(2,﹣2), =(x,y), =(1, ).
(1)若 ∥ ,求x,y之间的关系式;
(2)满足(1)的同时又有 ⊥ ,求x,y的值以及四边形ABCD的面积.
【答案】
(1)解: = =﹣ ﹣(x,y)﹣(2,﹣2)=(﹣3﹣x,﹣y﹣ ).
∵ ∥ ,∴x(﹣y﹣ )﹣y(﹣3﹣x)=0,化为x=2y
(2)解: = =(2+x,﹣2+y), = = .
∵ ⊥ ,∴(2+x)(x+1)+(y﹣2)(y+ )=0,又x=2y,
联立解得 ,或 .
∴ = , =(2,4), = , = .
或 =(﹣2,﹣4), =(﹣3, ), = , = .
∴SABCD= = =
【解析】(1) = . ∥ ,利用向量共线定理即可得出.(2) = =(2+x,﹣2+y), = = .由 ⊥ ,可得 =0,再利用SABCD= 即可得出.
【考点精析】利用平面向量的坐标运算对题目进行判断即可得到答案,需要熟知坐标运算:设,则;;设,则.
练习册系列答案
相关题目