题目内容
【题目】如图,四边形是边长为的正方形,平面平面, , .
(Ⅰ)求证: 平面;
(Ⅱ)求三棱锥的体积.
【答案】(Ⅰ)证明见解析;(II)
【解析】试题分析:证明线面垂直,第一可利用线面垂直的判定定理,证明直线与平面内的两条相交直线垂直,进而说明线面垂直.求几何体的体积注意利用转化思想,包括顶点转化,底面转化,平行转化,对称转化、比例转化等,关键在于转化灵活.
试题解析:
(Ⅰ)平面平面,
平面平面, 平面ABEF, 且,
平面.
又因为平面, .
又因为四边形为正方形, .
平面BDE, ,
所以平面.
(Ⅱ)设 ,因为四边形为正方形,O是中点
设是
所以四边形是平行四边形
点C到平面DEF距离等于点A到平面DEF距离
所以体积为
练习册系列答案
相关题目