题目内容
【题目】
在平面直角坐标系xOy中,点B与点A(-1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于.
(Ⅰ)求动点P的轨迹方程;
(Ⅱ)设直线AP和BP分别与直线x=3交于点M,N,问:是否存在点P使得△PAB与△PMN的面积相等?若存在,求出点P的坐标;若不存在,说明理由.
【答案】(I)(II)存在点使得与的面积相等,此时点的坐标为.
【解析】
试题(1)利用直接法设,利用直线与的斜率之积等于,得到关于的方程,求得其轨迹方程;(2)根据题意设,点的坐标分别为三个点的坐标,再利用三角形的面积公式和点到直线的距离公式,求得和的面积,利用,进而得到关于的方程,求得点的坐标为.
试题解析:(1)点的轨迹方程为; 5分
(2)设点的坐标为,点的坐标分别为,
则直线的方程为,
直线的方程为.
令,得,
于是的面积, 8分
直线的方程为,,
点到直线的距离,
于是的面积, 10分
当时,得,
又,所以,解得,
因为,所以,
故存在点使得与的面积相等,
此时点的坐标为. 12分
【题目】下列说法:
①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;
②设有一个回归方程,变量x增加一个单位时,y平均增加5个单位;
③线性回归方程必过;
④在一个列联表中,由计算得是,则有的把握确认这两个变量间有关系.
其中错误的个数是( )
本题可以参考独立性检验临界值表:
0.05 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
A.0B.1C.2D.3
【题目】调查某校高三年级男生的身高,随机抽取40名高三男生,实测身高数据(单位:cm)如下:
171 | 163 | 163 | 166 | 166 | 168 | 168 | 160 | 168 | 165 |
171 | 169 | 167 | 169 | 151 | 168 | 170 | 168 | 160 | 174 |
165 | 168 | 174 | 159 | 167 | 156 | 157 | 164 | 169 | 180 |
176 | 157 | 162 | 161 | 158 | 164 | 163 | 163 | 167 | 161 |
(1)作出频率分布表;
(2)画出频率分布直方图.