题目内容
(本题满分12分,每一问6分)
如图,弧
是半径为
的半圆,
为直径,点
为弧
的中点,点
和点
为线段
的三等分点,线段
与弧
交于点
,且
,平面
外一点
满足![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222613065400.png)
平面
,
。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232226132685852.jpg)
⑴证明:![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222613283398.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222613096183.png)
;
⑵ 将
(及其内部)绕
所在直线旋转一周形成一几何体,求该几何体的体积。
如图,弧
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222612488499.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222612503260.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222612534402.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222612550318.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222612534402.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222612597309.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222612706313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222612722389.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222612737398.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222612909416.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222612987316.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222613002746.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222612488499.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222613049302.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222613065400.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222613096183.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222613112460.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222613236537.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232226132685852.jpg)
⑴证明:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222613283398.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222613096183.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222613502388.png)
⑵ 将
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222613517547.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222613065400.png)
⑴ 证明: 见解析;⑵
。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232226135481105.png)
本试题主要是考查了圆内几何性质,以及线面垂直的判定定理,以及关于圆锥的体积的运算的综合运用。
(1)由于
为直径,点
为弧
的中点,
,即
又![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222613658238.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222613065400.png)
平面
,
平面
,
,进而得到线面垂直,利用性质定理得到线线垂直的证明。
(2)建立空间直角坐标系,则相关点的坐标为
,
,
,
,利用两点的距离公式得到高的长度,然后求解椎体的体积公式即可。
⑴ 证明:
为直径,点
为弧
的中点,
,即
。………2分
又![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222613658238.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222613065400.png)
平面
,
平面
,
,
由
平面
,……4分
又![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222613658238.png)
平面
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222615498195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222613283398.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222613096183.png)
。…………………………………………………………………………6分
⑵ 如图所示,建立空间直角坐标系,则相关点的坐标为
,
,
,
,……………………………………7分
设
则由
,得![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222615795752.png)
,……………………………………………………………………9分
则
,由题设知,所得几何体为圆锥,其底面积为
,高为
。…………………………………………………11分
所以该圆锥的体积为
。………………………………12分
(1)由于
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222612534402.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222612550318.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222612534402.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222613626783.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222613642569.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222613658238.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222613065400.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222613096183.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222613112460.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222613860441.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222613112460.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222614126602.png)
(2)建立空间直角坐标系,则相关点的坐标为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222614141584.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222614157617.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222614172630.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222614188626.png)
⑴ 证明:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222612534402.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222612550318.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222612534402.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222613626783.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222613642569.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222613658238.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222613065400.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222613096183.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222613112460.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222613860441.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222613112460.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222614126602.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222615498195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232226155141303.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222615530451.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222613658238.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222615561434.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222615530451.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222615498195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222613283398.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222613096183.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222613502388.png)
⑵ 如图所示,建立空间直角坐标系,则相关点的坐标为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222614141584.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222614157617.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222614172630.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222614188626.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222615748682.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222613002746.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222615795752.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232226158101009.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232226159981589.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222616091825.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823222613236537.png)
所以该圆锥的体积为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232226135481105.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目