题目内容
【题目】设函数.
(1)当(为自然对数的底数)时,求的最小值;
(2)讨论函数零点的个数;
(3)若对任意恒成立,求的取值范围.
【答案】(1)2;(2)当时,函数无零点;当或时,函数有且仅有一个零点;当时,函数有两个零点;(3).
【解析】
试题(1)当m=e时,>0,由此利用导数性质能求出f(x)的极小值;(2)由,得,令,x>0,m∈R,则h(1)=,
h′(x)=1-x2=(1+x)(1-x),由此利用导数性质能求出函数g(x)=f′(x)-零点的个数;(3)(理)当b>a>0时,f′(x)<1在(0,+∞)上恒成立,由此能求出m的取值范围
试题解析:(1)由题设,当时,
易得函数的定义域为
当时,,此时在上单调递减;
当时,,此时在上单调递增;
当时,取得极小值
的极小值为2
(2)函数
令,得
设
当时,,此时在上单调递增;
当时,,此时在上单调递减;
所以是的唯一极值点,且是极大值点,因此x=1也是的最大值点,
的最大值为
又,结合y=的图像(如图),可知
①当时,函数无零点;
②当时,函数有且仅有一个零点;
③当时,函数有两个零点;
④时,函数有且只有一个零点;
综上所述,当时,函数无零点;当或时,函数有且仅有一个零点;当时,函数有两个零点.
(3)对任意恒成立,等价于恒成立
设,在上单调递减
在恒成立
恒成立
(对,仅在时成立),的取值范围是
【题目】某研究机构为了了解大学生对冰壶运动的兴趣,随机从某校学生中抽取了100人进行调查,经统计男生与女生的人数比为,男生中有20人表示对冰壶运动有兴趣,女生中有15人对冰壶运动没有兴趣.
(1)完成列联表,并判断能否有把握认为“对冰壶运动是否有兴趣与性别有关”?
有兴趣 | 没有兴趣 | 合计 | |
男 | 20 | ||
女 | 15 | ||
合计 | 100 |
(2)用分层抽样的方法从样本中对冰壶运动有兴趣的学生中抽取6人,求抽取的男生和女生分别为多少人?若从这6人中选取两人作为冰壶运动的宣传员,求选取的2人中恰好有1位男生和1位女生的概率.
附:参考公式1.,);2.,其中
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.076 | 3.841 | 5.024 | 6.635 |
【题目】对某校高三年级学生参加社区服务次数进行统计,随机抽取名学生作为样本,得到这名学生参加社区服务的次数.根据此数据作出了频数与频率统计表和频率分布直方图如下:
分组 | 频数 | 频率 |
15 | 0.30 | |
29 | ||
2 | ||
合计 | 1 |
(1)求出表中,及图中的值;
(2)若该校高三学生人数有500人,试估计该校高三学生参加社区服务的次数在区间内的人数;
(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间内的概率.