题目内容
【题目】已知动圆E与圆外切,并与直线相切,记动圆圆心E的轨迹为曲线C.
(1)求曲线C的方程;
(2)过点的直线l交曲线C于A,B两点,若曲线C上存在点P使得,求直线l的斜率k的取值范围.
【答案】(1);(2).
【解析】
(1)根据抛物线的定义,结合已知条件,即可容易求得结果;
(2)设出直线的方程,联立抛物线方程,根据直线与抛物线相交则,结合由得到的斜率关系,即可求得斜率的范围.
(1)因为动圆与圆外切,并与直线相切,
所以点到点的距离比点到直线的距离大.
因为圆的半径为,
所以点到点的距离等于点到直线的距离,
所以圆心的轨迹为抛物线,且焦点坐标为.
所以曲线的方程.
(2)设,,
由得,
由得且.
,
,同理
由,得,
即,
所以,
由,得且,
又且,
所以的取值范围为.
【题目】目前,新冠病毒引发的肺炎疫情在全球肆虐,为了解新冠肺炎传播途径,采取有效防控措施,某医院组织专家统计了该地区500名患者新冠病毒潜伏期的相关信息,数据经过汇总整理得到如图所示的频率分布直方图(用频率作为概率).潜伏期不高于平均数的患者,称为“短潜伏者”,潜伏期高于平均数的患者,称为“长潜伏者”.
(1)求这500名患者潜伏期的平均数(同一组中的数据用该组区间的中点值作代表),并计算出这500名患者中“长潜伏者”的人数;
(2)为研究潜伏期与患者年龄的关系,以潜伏期是否高于平均数为标准进行分层抽样,从上述500名患者中抽取300人,得到如下表格.
(i)请将表格补充完整;
短潜伏者 | 长潜伏者 | 合计 | |
60岁及以上 | 90 | ||
60岁以下 | 140 | ||
合计 | 300 |
(ii)研究发现,某药物对新冠病毒有一定的抑制作用,现需在样本中60岁以下的140名患者中按分层抽样方法抽取7人做I期临床试验,再从选取的7人中随机抽取两人做Ⅱ期临床试验,求两人中恰有1人为“长潜伏者”的概率.