题目内容

5.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的左、右焦点分别为F1,F2,过F1作圆x2+y2=a2的切线分别交双曲线的左、右两支于点B、C,且|BC|=|CF2|,则双曲线的离心率为(  )
A.$\sqrt{2\sqrt{5}+3}$B.$\sqrt{2\sqrt{5}-3}$C.$\sqrt{5+2\sqrt{3}}$D.$\sqrt{5-2\sqrt{3}}$

分析 过F1作圆x2+y2=a2的切线分别交双曲线的左、右两支于点B、C,且|BC|=|CF2|,可得|BF1|=2a,求出B的坐标,代入双曲线方程,可得a,b的关系,再由a,b,c的关系可得a,c的关系.由离心率公式计算即可得到.

解答 解:∵过F1作圆x2+y2=a2的切线分别交双曲线的左、右两支于点B、C,且|BC|=|CF2|,
∴|BF1|=2a,
设切点为T,B(x,y),则利用三角形的相似可得$\frac{y}{a}$=$\frac{c+x}{b}$=$\frac{2a}{c}$
∴x=$\frac{2ab-{c}^{2}}{c}$,y=$\frac{2{a}^{2}}{c}$,
∴B($\frac{2ab-{c}^{2}}{c}$,$\frac{2{a}^{2}}{c}$)
代入双曲线方程,整理可得b=($\sqrt{3}$+1)a,
则c=$\sqrt{{a}^{2}+{b}^{2}}$=$\sqrt{5+2\sqrt{3}}$a,
即有e=$\frac{c}{a}$=$\sqrt{5+2\sqrt{3}}$.
故选C.

点评 本题考查双曲线的离心率的求法,同时考查直线和圆相切的性质,考查学生的计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网