题目内容
【题目】设f(x)=etx(t>0),过点P(t,0)且平行于y轴的直线与曲线C:y=f(x)的交点为Q,曲线C过点Q的切线交x轴于点R,若S(1,f(1)),则△PRS的面积的最小值是_____.
【答案】
【解析】
计算R(t,0),PR=t﹣(t),△PRS的面积为S,导数S′,由S′=0得t=1,根据函数的单调性得到最值.
∵PQ∥y轴,P(t,0),∴Q(t,f(t))即Q(t,),
又f(x)=etx(t>0)的导数f′(x)=tetx,∴过Q的切线斜率k=t,
设R(r,0),则k,∴r=t,
即R(t,0),PR=t﹣(t),
又S(1,f(1))即S(1,et),∴△PRS的面积为S,
导数S′,由S′=0得t=1,
当t>1时,S′>0,当0<t<1时,S′<0,∴t=1为极小值点,也为最小值点,
∴△PRS的面积的最小值为.
故答案为:.
练习册系列答案
相关题目