题目内容
【题目】设数列满足,其中,且, 为常数.
(1)若是等差数列,且公差,求的值;
(2)若,且存在,使得对任意的都成立,求的最小值;
(3)若,且数列不是常数列,如果存在正整数,使得对任意的均成立. 求所有满足条件的数列中的最小值.
【答案】(1)(2)(3)3
【解析】试题分析:(1)利用等差数列定义将条件转化为公差关系,解方程可得的值;(2)先求的值;即得数列为等比数列,分离变量将不等式恒成立问题转化为对应函数最值问题: ,即, 最大值,再根据数列单调性确定最大值,即得的最小值;(3)本题由于求周期最小值,可以从小逐个验证即可: 为常数列,舍去; 时,可推得,舍去; 时,可取一个数列满足条件.
试题解析:解:(1)由题意,可得,
化简得,又,所以.
(2)将代入条件,可得,解得,
所以,所以数列是首项为1,公比的等比数列,所以.
欲存在,使得,即对任意都成立,
则,所以对任意都成立.
令,则,
所以当时, ;当时, ;当时, .
所以的最大值为,所以的最小值为.
(3)因为数列不是常数列,所以.
①若,则恒成立,从而, ,所以,
所以,又,所以,可得是常数列.矛盾.
所以不合题意.
②若,取(*),满足恒成立.
由,得.
则条件式变为.
由,知;
由,知;
由,知.
所以,数列(*)适合题意.
所以的最小值为.
练习册系列答案
相关题目