题目内容
【题目】已知椭圆 的焦距为,斜率为的直线与椭圆交于两点,若线段的中点为,且直线的斜率为.
(1)求椭圆的方程;
(2)若过左焦点斜率为的直线与椭圆交于点 为椭圆上一点,且满足,问:是否为定值?若是,求出此定值,若不是,说明理由.
【答案】(1) .
(2) 为定值.过程见解析.
【解析】分析:(1)焦距说明,用点差法可得=.这样可解得,得椭圆方程;
(2)若,这种特殊情形可直接求得,在时,直线方程为,设,把直线方程代入椭圆方程,后可得,然后由纺长公式计算出弦长,同时直线方程为,代入椭圆方程可得点坐标,从而计算出,最后计算即可.
详解:(1)由题意可知,设,代入椭圆可得:
,两式相减并整理可得,
,即.
又因为,,代入上式可得,.
又,所以,
故椭圆的方程为.
(2)由题意可知,,当为长轴时,为短半轴,此时
;
否则,可设直线的方程为,联立,消可得,
,
则有:,
所以
设直线方程为,联立,根据对称性,
不妨得,
所以.
故,
综上所述,为定值.
练习册系列答案
相关题目