题目内容
(本小题共14分)
已知
,动点
到定点![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141119037200.gif)
的距离比
到定直线
的距离小
.
(I)求动点
的轨迹
的方程;
(Ⅱ)设
是轨迹
上异于原点
的两个不同点,
,求
面积的最小值;
(Ⅲ)在轨迹
上是否存在两点
关于直线
对称?若存在,求出直线
的方程,若不存在,说明理由.
已知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141119005266.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141119021327.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141119037200.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141119052512.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141119021327.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141119068283.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141119083240.gif)
(I)求动点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141119021327.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141119115205.gif)
(Ⅱ)设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141119130248.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141119115205.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141119161209.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141119177381.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141119193294.gif)
(Ⅲ)在轨迹
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141119115205.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141119208260.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141119224800.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141119239204.gif)
(1)
(2)
(3)不存在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141119255414.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141119271352.gif)
(Ⅰ)∵动点
到定点
与到定直线
的距离相等
∴点
的轨迹为抛物线,轨迹
的方程为:
. ……………4分
(Ⅱ)设![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141119411628.gif)
∵![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141119177381.gif)
∴![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141119442498.gif)
∵![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082314111945865.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141119489608.gif)
∴![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141119505440.gif)
∴![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231411195201262.gif)
=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141119536816.gif)
=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231411195671044.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141119583140.gif)
=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141119614279.gif)
∴当且仅当
时取等号,
面积最小值为
. ……………9分
(Ⅲ)设
关于直线
对称,且
中点![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141119754471.gif)
∵
在轨迹![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082314111978565.gif)
上
∴![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082314111991073.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141119926615.gif)
两式相减得:![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141119941780.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082314111995772.gif)
∴![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141119973790.gif)
∴![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141119988415.gif)
∵
在
上
∴
,点
在抛物线外
∴在轨迹
上不存在两点
关于直线
对称. ……………14分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141119021327.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141119037200.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141119349397.gif)
∴点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141119021327.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141119115205.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141119255414.gif)
(Ⅱ)设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141119411628.gif)
∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141119177381.gif)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141119442498.gif)
∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082314111945865.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141119489608.gif)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141119505440.gif)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231411195201262.gif)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141119536816.gif)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231411195671044.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141119583140.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231411195981042.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141119614279.gif)
∴当且仅当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141119629427.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141119193294.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141119271352.gif)
(Ⅲ)设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141119676648.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141119239204.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141119739251.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141119754471.gif)
∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141119676648.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082314111978565.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141119115205.gif)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082314111991073.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141119926615.gif)
两式相减得:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141119941780.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082314111995772.gif)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141119973790.gif)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141119988415.gif)
∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141119754471.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141119224800.gif)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141120051491.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141119754471.gif)
∴在轨迹
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141119115205.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141119208260.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141119239204.gif)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目