题目内容

【题目】已知集合A={x|y= },B={x|x2﹣2x+1﹣m2≤0}.
(1)若m=3,求A∩B;
(2)若m>0,AB,求m的取值范围.

【答案】
(1)解:由3﹣2x﹣x2≥0,解得﹣3≤x≤1,∴集合A={x|﹣3≤x≤1};

当m=3时,x2﹣2x+1﹣m2≤0可化为x2﹣2x﹣8≤0,即(x﹣4)(x+2)≤0,

解得﹣2≤x≤4,∴集合B={x|﹣2≤x≤4},

∴A∩B={x|﹣2≤x≤1};


(2)解:m>0,B={x|x2﹣2x+1﹣m2≤0}=[1﹣m,1+m].

∵AB,

∴m≥4.


【解析】(1)化简集合A,B,即可求A∩B;(2)m>0,B={x|x2﹣2x+1﹣m2≤0}=[1﹣m,1+m],利用AB,得出不等式组,即可求m的取值范围.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网