题目内容

【题目】【2017广东佛山二模】已知椭圆 )的焦距为4,左、右焦点分别为,且与抛物线 的交点所在的直线经过.

(Ⅰ)求椭圆的方程;

(Ⅱ)过的直线交于 两点,与抛物线无公共点,求的面积的取值范围.

【答案】(Ⅰ);(Ⅱ) .

【解析】试题分析:(1)先根据焦距确定焦点坐标,再根据对称性得与抛物线 的交点所在的直线为,即得一个交点为,代入椭圆方程,结合可解得 ;(2)先设直线 ,由直线与抛物线无公共点,利用判别式小于零得.由弦长公式可求底边AB长,利用点到直线距离可得高,代入面积公式可得,根据对勾函数确定其值域.

试题解析:(Ⅰ)依题意得,则 .

所以椭圆与抛物线的一个交点为

于是 ,从而.

,解得

所以椭圆的方程为.

(Ⅱ)依题意,直线的斜率不为0,设直线

,消去整理得,由.

,消去整理得

,则

所以

到直线距离

,则

所以三边形的面积的取值范围为.

练习册系列答案
相关题目

【题目】实验杯足球赛采用七人制淘汰赛规则,某场比赛中一班与二班在常规时间内战平,直接进入点球决胜环节,在点球决胜环节中,双方首先轮流罚点球三轮,罚中更多点球的球队获胜;若双方在三轮罚球中未分胜负,则需要进行一对一的点球决胜,即双方各派处一名队员罚点球,直至分出胜负;在前三轮罚球中,若某一时刻胜负已分,尚未出场的队员无需出场罚球(例如一班在先罚球的情况下,一班前两轮均命中,二班前两轮未能命中,则一班、二班的第三位同学无需出场).由于一班同学平时踢球热情较高,每位队员罚点球的命中率都能达到0.8,而二班队员的点球命中串只有0.5,比赛时通过抽签决定一班在每一轮都先罚球.

(1)定义事件为“一班第三位同学没能出场罚球”,求事件发生的概率;

(2)若两队在前三轮点球结束后打平,则进入一对一点球决胜,一对一球决胜由没有在之前点球大战中出场过的队员主罚点球,若在一对一点球决胜的某一轮中,某对队员射入点球且另一队员未能射入,则比赛结束;若两名队员均射入或者均射失点球,则进行下一轮比赛. 若直至双方场上每名队员都已经出场罚球,则比赛亦结束,双方通过抽签决定胜负,本场比赛中若已知双方在点球大战,以随机变量记录双方进行一对一点球决胜的轮数,求的分布列与数学期望.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网