题目内容
【题目】已知数列是以为公差的等差数列,数列是以为公比的等比数列.
(1)若数列的前项和为,且,,求整数的值;
(2)若,,,试问数列中是否存在一项,使得恰好可以表示为该数列中连续项的和?请说明理由;
(3)若,,(其中,且是的约数),求证:数列中每一项都是数列中的项.
【答案】(1);(2)不存在,理由见解析;(3)证明见解析.
【解析】
(1)由等差等比数列的表达式an=2n,bn=2qn-1,代入S3<a1003+5b2-2010直接求解即得到答案.
(2)可以先假设数列{bn}中存在一项bk,满足bk=bm+bm+1+bm+2++bm+p-1,再根据已知的条件去验证,看是否能找出矛盾.如果没有矛盾即存在,否则这样的项bk不存在;
(3)由已知条件b1=ar,得b2=b1q=arq=as=ar+(s-r)d,结合等差等比数列的性质,可证数列中每一项是否都是数列中的项.
(1)由题意知,an=2n,bn=2qn-1,
∴由S3<a1003+5b2-2010,
可得到b1+b2+b3<a1003+5b2-2010b1-4b2+b3<2006-2010q2-4q+3<0.
解得1<q<3,
又q为整数,
∴q=2
(2)假设数列{bn}中存在一项bk,满足bk=bm+bm+1+bm+2+…+bm+p-1,
∵bn=2n,
∴bk>bm+p-12k>2m+p-1k>m+p-1k≥m+p①
又
=2m+p-2m<2m+p,
∴k<m+p,此与①式矛盾.
∴这样的项bk不存在;
(3)由b1=ar,得b2=b1q=arq=as=ar+(s-r)d,
则
又,
从而,
∵as≠arb1≠b2,
∴q≠1,又ar≠0,
故.
又t>s>r,且(s-r)是(t-r)的约数,
∵q是整数,且q≥2,
对于数列中任一项bi(这里只要讨论i>3的情形),
有bi=arqi-1=ar+ar(qi-1-1)
=ar+ar(q-1)(1+q+q2+…+qi-2)
=ar+d(s-r)(1+q+q2+…+qi-2)
=ar+[((s-r)(1+q+q2+…+qi-2)+1)-1]d,
由于(s-r)(1+q+q2+…+qi-2)+1是正整数,
∴bi一定是数列的项.
故得证.