题目内容
【题目】某环线地铁按内、外环线同时运行,内、外环线的长均为30千米(忽略内、外环线长度差异).
(1)当9列列车同时在内环线上运行时,要使内环线乘客最长候车时间为10分钟,求内环线列车的最小平均速度;
(2)新调整的方案要求内环线列车平均速度为25千米/小时,外环线列车平均速度为30千米/小时.现内、外环线共有18列列车全部投入运行,要使内外环线乘客的最长候车时间之差不超过1分钟,向内、外环线应各投入几列列车运行?
【答案】(1)20千米/小时;(2)内环线投入10列列车运行,外环线投入8列列车.
【解析】
(1)设内环线列车的平均速度为v千米/小时,根据内环线乘客最长候车时间为10分钟,可得,从而可求内环线列车的最小平均速度;(2)设内环线投入x列列车运行,则外环线投入(18﹣x)列列车运行,分别求出内、外环线乘客最长候车时间,,根据,解不等式,即可求得结论.
(1)设内环线列车的平均速度为v千米/小时,则要使内环线乘客最长候车时间为10分钟,可得
∴v≥20
∴要使内环线乘客最长候车时间为10分钟,内环线列车的最小平均速度是20千米/小时;
(2)设内环线投入x列列车运行,则外环线投入(18﹣x)列列车运行,内、外环线乘客最长候车时间分别为t1,t2分钟,
则,
∴
∴
∴
∵x∈N+,∴x=10
∴当内环线投入10列列车运行,外环线投入8列列车时,内外环线乘客的最长候车时间之差不超过1分钟.
练习册系列答案
相关题目