题目内容
【题目】已知函数f(x)=b+logax(x>0且a≠1)的图象经过点(8,2)和(1,﹣1).
(1)求f(x)的解析式;
(2)[f(x)]2=3f(x),求实数x的值;
(3)令y=g(x)=2f(x+1)﹣f(x),求y=g(x)的最小值及其最小值时x的值.
【答案】
(1)解:由已知得,b+loga8=2,b+loga1=﹣1,(a>0且a≠1),
解得a=2,b=﹣1;
故f(x)=log2x﹣1(x>0);
(2)解:[f(x)]2=3f(x),即f(x)=0或3,
∴log2x﹣1=0或3,
∴x=2或16;
(3)解:g(x)=2f(x+1)﹣f(x)
=2[log2(x+1)﹣1]﹣(log2x﹣1)=log2(x+ +2)﹣1≥1,
当且仅当x= ,即x=1时,等号成立).
于是,当x=1时,g(x)取得最小值1.
【解析】(1)由已知得b+loga8=2,b+loga1=﹣1,从而求解析式即可;(2)[f(x)]2=3f(x),即f(x)=0或3,即可求实数x的值;(3)化简g(x)=2[log2(x+1)﹣1]﹣(log2x﹣1)=log2(x+ +2)﹣1,从而利用基本不等式求最值.
【考点精析】解答此题的关键在于理解对数函数的单调性与特殊点的相关知识,掌握过定点(1,0),即x=1时,y=0;a>1时在(0,+∞)上是增函数;0>a>1时在(0,+∞)上是减函数.
练习册系列答案
相关题目