题目内容
【题目】某地政府落实党中央“精准扶贫”政策,解决一贫困山村的人畜用水困难,拟修建一个底面为正方形(由地形限制边长不超过10m)的无盖长方体蓄水池,设计蓄水量为800m3 . 已知底面造价为160元/m2 , 侧面造价为100元/m2 . (I)将蓄水池总造价f(x)(单位:元)表示为底面边长x(单位:m)的函数;
(II)运用函数的单调性定义及相关知识,求蓄水池总造价f(x)的最小值.
【答案】解:(Ⅰ)设蓄水池高为h,则 ,
∴
=
(Ⅱ)任取x1,x2∈(0,10],且x1<x2,则
=
∵0<x1<x2≤10,∴x1x2>0,x1﹣x2<0,x1x2(x1+x2)<2000,
∴y=f(x1)﹣f(x2),即f(x1)>f(x2),∴y=f(x)在x∈(0,10]上单调递减
故x=10当时,fmin(x)=f(10)=48000
答:当底面边长为10m时,蓄水池最低造价为48000元
【解析】(I)设蓄水池高为h,则 ,利用底面造价为160元/m2,侧面造价为100元/m2,即可将蓄水池总造价f(x)(单位:元)表示为底面边长x(单位:m)的函数;(II)确定y=f(x)在x∈(0,10]上单调递减,即可求蓄水池总造价f(x)的最小值.
【考点精析】本题主要考查了基本不等式在最值问题中的应用的相关知识点,需要掌握用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”才能正确解答此题.
【题目】北京市为了缓解交通压力,计划在某路段实施“交通限行”,为调查公众对该路段“交通限行”的态度,某机构从经过该路段的人员中随机抽查了80人进行调查,将调查情况进行整理,制成表:
年龄(岁) | [15,30) | [30,45) | [45,60) | [60,75) |
人数 | 24 | 26 | 16 | 14 |
赞成人数 | 12 | 14 | x | 3 |
(1)若经过该路段的人员对“交通限行”的赞成率为0.40,求x的值;
(2)在(1)的条件下,若从年龄在[45,60),[60,75)内的两组赞成“交通限行”的人中在随机选取2人进行进一步的采访,求选中的2人中至少有1人来自[60,75)内的概率.