题目内容

【题目】如图,在三棱锥A﹣BCD中,侧面ABC是一个等腰直角三角形,∠BAC=90°,底面BCD是一个等边三角形,平面ABC⊥平面BCD,E为BD的中点,则AE与平面BCD所成角的大小为

【答案】45°
【解析】解:∵在三棱锥A﹣BCD中,侧面ABC是一个等腰直角三角形,∠BAC=90°,
底面BCD是一个等边三角形,平面ABC⊥平面BCD,E为BD的中点,
∴过A作AO⊥平面BDC,交BC于O,连结OE,则O是BC中点,
∠AEO是AE与平面BCD所成角,
∵△ABC是等腰直角三角形,O是BC中点,E是BD中点,△BDC是等边三角形,
∴AO=OE,∴∠AEO=45°.
∴AE与平面BCD所成角的大小为45°.
所以答案是:45°.

【考点精析】利用空间角的异面直线所成的角对题目进行判断即可得到答案,需要熟知已知为两异面直线,A,C与B,D分别是上的任意两点,所成的角为,则

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网