题目内容
【题目】综合题
(1)解不等式:3≤x2﹣2x<8;
(2)已知a,b,c,d均为实数,求证:(a2+b2)(c2+d2)≥(ac+bd)2 .
【答案】
(1)解:不等式:3≤x2﹣2x<8,
即: ,解得: ,即x∈(﹣2,﹣1]∪[3,4).
(2)证明:∵(a2+b2)(c2+d2)﹣(ac+bd)2
=a2c2+a2d2+b2c2+b2d2﹣a2c2﹣2abcd﹣b2d2
=a2d2+b2c2﹣2abcd
=(ad﹣bc)2≥0
∴(a2+b2)(c2+d2)≥(ac+bd)2.
【解析】(1)直接利用二次不等式化简求解即可.(2)利用作差法化简,证明即可.
【考点精析】解答此题的关键在于理解不等式的证明的相关知识,掌握不等式证明的几种常用方法:常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等.
练习册系列答案
相关题目
【题目】北京市为了缓解交通压力,计划在某路段实施“交通限行”,为调查公众对该路段“交通限行”的态度,某机构从经过该路段的人员中随机抽查了80人进行调查,将调查情况进行整理,制成表:
年龄(岁) | [15,30) | [30,45) | [45,60) | [60,75) |
人数 | 24 | 26 | 16 | 14 |
赞成人数 | 12 | 14 | x | 3 |
(1)若经过该路段的人员对“交通限行”的赞成率为0.40,求x的值;
(2)在(1)的条件下,若从年龄在[45,60),[60,75)内的两组赞成“交通限行”的人中在随机选取2人进行进一步的采访,求选中的2人中至少有1人来自[60,75)内的概率.