题目内容

分别为椭圆的左、右两个焦点,若椭圆C上的点A(1,)到F1,F2两点的距离之和等于4.
(1)写出椭圆C的方程和焦点坐标;
(2)过点P(1,)的直线与椭圆交于两点D、E,若DP=PE,求直线DE的方程;
(3)过点Q(1,0)的直线与椭圆交于两点M、N,若△OMN面积取得最大,求直线MN的方程.
(1)椭圆C的方程为
(2)4x+4y=5
(3)x=1
(1)椭圆C的焦点在x轴上,
由椭圆上的点A到F1、F2两点的距离之和是4,得2a=4,即a=2.;
又点A(1,) 在椭圆上,因此得b2=1,于是c2=3;
所以椭圆C的方程为
(2)∵P在椭圆内,∴直线DE与椭圆相交,
∴设D(x1,y1),E(x2,y2),代入椭圆C的方程得
x12+4y12-4="0," x22+4y22-4=0,相减得2(x1-x2)+4×2×(y1-y2)=0,∴斜率为k=-1
∴DE方程为y-1= -1(x-),即4x+4y=5;
(3)直线MN不与y轴垂直,∴设MN方程为my=x-1,代入椭圆C的方程得
(m2+4)y2+2my-3="0," 设M(x1,y1),N(x2,y2),则y1+y2=-, y1y2=-,且△>0成立.
又SOMN=|y1-y2|=×=,设t=,则
SOMN=,(t+)′=1-t-2>0对t≥恒成立,∴t=时t+取得最小,SOMN最大,
此时m=0,∴MN方程为x=1
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网