题目内容
一动圆和直线l:x=-
相切,并且经过点F(
,0),
(Ⅰ)求动圆的圆心θ的轨迹C的方程;
(Ⅱ)若过点P(2,0)且斜率为k的直线交曲线C于M(x1,y1),N(x2,y2)两点.
求证:OM⊥ON.
1 |
2 |
1 |
2 |
(Ⅰ)求动圆的圆心θ的轨迹C的方程;
(Ⅱ)若过点P(2,0)且斜率为k的直线交曲线C于M(x1,y1),N(x2,y2)两点.
求证:OM⊥ON.
( I)∵动圆和直线l:x=-
相切,并且经过点F(
,0),
∴圆心θ到F(
,0)的距离等于θ到定直线l:x=-
的距离,都等于圆的半径…(2分)
根据抛物线的定义,可得:圆心θ的轨迹C就是以F为焦点,l为准线的抛物线,…(3分)
设抛物线方程为y2=2px,其中
=
,解得p=1
∴抛物线方程是y2=2x,即为所求轨迹C的方程.…(6分)
( II)证明:设过点P(2,0)且斜率为k的直线的方程为
y=k(x-2)(k≠0)①…(7分)
代入y2=2x消去y,可得k2x2-2(k2+1)x+4k2=0.②…(8分)
由根与系数的关系,得x1x2=
=4.…(9分)
结合y12=2x1,y22=2x2,可得y1y2=
=2
=4.…(10分)
∴
•
=x1x2+y1y2=4-4=0,
由此可得向量
、
夹角为90°,即OM⊥ON.…(12分)
1 |
2 |
1 |
2 |
∴圆心θ到F(
1 |
2 |
1 |
2 |
根据抛物线的定义,可得:圆心θ的轨迹C就是以F为焦点,l为准线的抛物线,…(3分)
设抛物线方程为y2=2px,其中
p |
2 |
1 |
2 |
∴抛物线方程是y2=2x,即为所求轨迹C的方程.…(6分)
( II)证明:设过点P(2,0)且斜率为k的直线的方程为
y=k(x-2)(k≠0)①…(7分)
代入y2=2x消去y,可得k2x2-2(k2+1)x+4k2=0.②…(8分)
由根与系数的关系,得x1x2=
4k2 |
k2 |
结合y12=2x1,y22=2x2,可得y1y2=
4x2x2 |
x2x2 |
∴
OM |
ON |
由此可得向量
OM |
ON |
练习册系列答案
相关题目