题目内容

10.对任意正数x,y,不等式$\frac{x}{3x+y}+\frac{3y}{x+3y}≤k$恒成立,则实数k的取值范围是(  )
A.$[{\frac{5}{4},+∞})$B.$[{\frac{{6-\sqrt{3}}}{4},+∞})$C.[1,+∞)D.$[{\frac{{\sqrt{3}}}{2},+∞})$

分析 令m=3x+y,n=x+3y,$\frac{x}{3x+y}$可化为$\frac{3}{8}$+$\frac{9}{8}$-$\frac{1}{8}$($\frac{n}{m}$+$\frac{3m}{n}$)利用基本不等式求出其最大值,可得实数k的取值范围.

解答 解:令m=3x+y,n=x+3y
则x=$\frac{3m-n}{8}$,y=$\frac{3n-m}{8}$
则$\frac{x}{3x+y}+\frac{3y}{x+3y}=\frac{\frac{3m-n}{8}}{m}+\frac{\frac{9n-3m}{8}}{n}$=$\frac{3}{8}+\frac{9}{8}-\frac{1}{8}(\frac{n}{m}+\frac{3m}{n})≤\frac{6-\sqrt{3}}{4}$
若$\frac{x}{3x+y}+\frac{3y}{x+3y}≤k$恒成立
则k≥$\frac{6-\sqrt{3}}{4}$即实数k的取值范围是[$\frac{6-\sqrt{3}}{4},+∞$)
故选B

点评 本题考查的知识点函数恒成立问题,基本不等式,其中利用基本不等式求出$\frac{x}{3x+y}+\frac{3y}{x+3y}$的最大值是解答的关键,属于中档题型.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网