题目内容
2.已知实数x,y满足ax<ay(0<a<1),则下列关系式恒成立的是( )A. | ln(x2+1)>ln(y2+1) | B. | sinx>siny | C. | x3>y3 | D. | $\frac{1}{{{x^2}+1}}>\frac{1}{{{y^2}+1}}$ |
分析 实数x,y满足ax<ay(0<a<1),可得x>y,对于A.C.D分别举反例即可否定,对于C:由于y=x3在R上单调递增,即可判断出正误.
解答 解:∵实数x,y满足ax<ay(0<a<1),
∴x>y,
A.取x=2,b=-3,不成立;
B.取x=π,y=-π,不成立;
C.由于y=x3在R上单调递增,因此正确;
D.取x=2,y=-1,不成立.
故选:C.
点评 本题考查了函数的单调性,考查了推理能力,属于基础题.
练习册系列答案
相关题目
13.已知全集U=R,设集合A={x|y=lg(x-1)},集合B={y|y=2x,x≥1},则A∩(∁UB)=( )
A. | [1,2] | B. | [1,2) | C. | (1,2) | D. | (1,2] |
10.对任意正数x,y,不等式$\frac{x}{3x+y}+\frac{3y}{x+3y}≤k$恒成立,则实数k的取值范围是( )
A. | $[{\frac{5}{4},+∞})$ | B. | $[{\frac{{6-\sqrt{3}}}{4},+∞})$ | C. | [1,+∞) | D. | $[{\frac{{\sqrt{3}}}{2},+∞})$ |
7.P是双曲线$\frac{x^2}{4}$-y2=1右支(在第一象限内)上的任意一点,A1,A2分别是左右顶点,O是坐标原点,直线PA1,PO,PA2的斜率分别为k1,k2,k3,则斜率之积k1k2k3的取值范围是( )
A. | (0,1) | B. | (0,$\frac{1}{8}$) | C. | (0,$\frac{1}{4}$) | D. | (0,$\frac{1}{2}$) |
14.某风景区对5个旅游景点的门票价格进行了调整,据统计,调价前后各景点的游客人数基本不变.有关数据如下表所示:
(1)该风景区称调整前后这5个景点门票的平均收费不变,平均日总收入持平.问风景区是怎样计算的?
(2)另一方面,游客认为调整收费后风景区的平均日总收入相对调整前,实际上增加了约9.4%.问游客是怎样计算的?
(3)你认为风景区和游客哪一个的说法较能反映整体情况?
景点 | A | B | C | D | E |
原价(元) | 10 | 10 | 15 | 20 | 25 |
现价(元) | 5 | 5 | 15 | 25 | 30 |
平均日人数(千人) | 1 | 1 | 2 | 3 | 2 |
(2)另一方面,游客认为调整收费后风景区的平均日总收入相对调整前,实际上增加了约9.4%.问游客是怎样计算的?
(3)你认为风景区和游客哪一个的说法较能反映整体情况?
12.已知函数 f(x)=Asin(ωx+φ)(其中A>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,为了得到g(x)=sin 2x的图象,则只需将f (x)的图象( )
A. | 向右平移 $\frac{π}{6}$个长度单位 | B. | 向右平移 $\frac{π}{12}$个长度单位 | ||
C. | 向左平移$\frac{π}{6}$个长度单位 | D. | 向左平移 $\frac{π}{12}$个长度单位 |