题目内容

3.设x,y满足不等式组$\left\{{\begin{array}{l}{x+y-6≤0}\\{2x-y-1≤0}\\{3x-y-2≥0}\end{array}}\right.$,若z=ax+y的最大值为2a+4,最小值为a+1,则实数a的取值范围为(  )
A.[-1,2]B.[-2,1]C.[-3,-2]D.[-3,1]

分析 作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合进行求解即可.

解答 解:由z=ax+y得y=-ax+z,直线y=-ax+z是斜率为-a,y轴上的截距为z的直线,
作出不等式组对应的平面区域如图:
则A(1,1),B(2,4),
∵z=ax+y的最大值为2a+4,最小值为a+1,
∴直线z=ax+y过点B时,取得最大值为2a+4,
经过点A时取得最小值为a+1,
若a=0,则y=z,此时满足条件,
若a>0,则目标函数斜率k=-a<0,
要使目标函数在A处取得最小值,在B处取得最大值,
则目标函数的斜率满足-a≥kBC=-1,
即0<a≤1,
若a<0,则目标函数斜率k=-a>0,
要使目标函数在A处取得最小值,在B处取得最大值,
则目标函数的斜率满足-a≤kAC=2,
即-2≤a<0,
综上-2≤a≤1,
故选:B.

点评 本题主要考查线性规划的应用,根据条件确定A,B是最优解是解决本题的关键.注意要进行分类讨论.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网