题目内容
如图,AB是⊙O的直径,BE为⊙O的切线,点C为⊙O上不同于A,B的一点,AD为∠BAC的平分线,且分别与BC交于H,与⊙O交于D,与BE交于E,连接BD,CD.
(1)求证:BD平分∠CBE;
(2)求证:AH·BH=AE·HC.
(1)求证:BD平分∠CBE;
(2)求证:AH·BH=AE·HC.
(1)见解析(2)见解析
(1)由弦切角定理知∠DBE=∠DAB.
又∠DBC=∠DAC,∠DAB=∠DAC,
所以∠DBE=∠DBC,即BD平分∠CBE.
(2)由(1)可知BE=BH,
所以AH·BH=AH·BE,
因为∠DAB=∠DAC,∠ACB=∠ABE,
所以△AHC∽△AEB,
所以,即AH·BE=AE·HC,
即AH·BH=AE·HC.
又∠DBC=∠DAC,∠DAB=∠DAC,
所以∠DBE=∠DBC,即BD平分∠CBE.
(2)由(1)可知BE=BH,
所以AH·BH=AH·BE,
因为∠DAB=∠DAC,∠ACB=∠ABE,
所以△AHC∽△AEB,
所以,即AH·BE=AE·HC,
即AH·BH=AE·HC.
练习册系列答案
相关题目