题目内容
10.过抛物线y2=2px(p>0)的焦点F作斜率为1的直线交抛物线于A,B两点,若|AB|=8,则p=2.分析 设直线AB的方程与抛物线的方程联立,利用根与系数的关系可得x1+x2.再利用弦长公式|AB|=x1+x2+p,即可得到p.
解答 解:抛物线y2=2px的焦点F($\frac{p}{2}$,0),准线方程为x=-$\frac{p}{2}$
∴直线AB的方程为y=x-$\frac{p}{2}$,
代入y2=2px可得x2-3px+$\frac{{p}^{2}}{4}$=0
∴xA+xB=3p,
由抛物线的定义可知,AB=AF+BF=xA+xB+p=4p=8
∴p=2.
故答案为:2.
点评 本题考查了抛物线的定义、标准方程,以及简单性质的应用,考查直线与抛物线相交问题、焦点弦长问题、弦长公式,属于中档题.
练习册系列答案
相关题目
20.在平面直角坐标系中,点(0,2)与点(4,0)关于直线l对称,则直线l的方程为( )
A. | x+2y-4=0 | B. | x-2y=0 | C. | 2x-y-3=0 | D. | 2x-y+3=0 |
1.已知函数f(x+1)=3x+1,则f(x)的解析式为( )
A. | f(x)=3-2x | B. | f(x)=2-3x | C. | f(x)=3x-2 | D. | f(x)=3x |
18.已知点A(1,2),B(4,3),向量$\overrightarrow{AC}=({-2,-2})$,则向量$\overrightarrow{BC}$=( )
A. | (-5,-3) | B. | (5,3) | C. | (1,-1) | D. | (-1,-1) |
15.下列函数中为偶函数的是( )
A. | y=$\frac{1}{x}$ | B. | y=lg|x| | C. | y=(x-1)2 | D. | y=2x |