搜索
题目内容
(本小题满分12分)
已知F
1
、F
2
分别是椭圆
的左、右焦点,曲线C是坐标原点为顶
点,
以F
2
为焦点的抛物线,过点F
1
的直线
交
曲线C于x轴上方两个不同点P、Q,点P关于x轴的对称点为M,设
(I)求
,求直线
的斜率k的取值范围;
(II)求证:直线MQ过定点。
试题答案
相关练习册答案
略
练习册系列答案
课课练与单元测试系列答案
世纪金榜小博士单元期末一卷通系列答案
单元测试AB卷台海出版社系列答案
黄冈新思维培优考王单元加期末卷系列答案
名校名师夺冠金卷系列答案
小学英语课时练系列答案
培优新帮手系列答案
天天向上一本好卷系列答案
小学生10分钟应用题系列答案
课堂作业广西教育出版社系列答案
相关题目
((本小题满分13分)
已知椭圆
:
,
为其左、右焦点,
为椭圆
上任一点,
的重心为
,内心
,且有
(其中
为实数)
(1)求椭圆
的离心率
;
(2)过焦点
的直线
与椭圆
相交于点
、
,若
面积的最大值为3,求椭圆
的方程.
设
,椭圆方程为
,抛物线方程为
.如图所示,过点
作
轴的平行线,与抛物线在第一象限的交点为
,已知抛物线在点
的切线经过椭圆的右焦点
.
(1)求满足条件的椭圆方程和抛物线方程;
(2)设
分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点
,使得
为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标).
(本小题满分15分)
已知点
,过点
作抛物线
的切线
,切点
在第二象限,如图.(Ⅰ)求切点
的纵坐标;
(Ⅱ)若离心率为
的椭圆
恰好经过切点
,设切线
交椭圆的另一点为
,记切线
的斜率分别为
,若
,求椭圆方程.
((本小题满分12分)
椭圆
的两个焦点F
1
、F
2
,点P在椭圆C上,且PF
1
⊥F
1
F
2
,且|PF
1
|=
(I)求椭圆C的方程。
(II)以此椭圆的上顶点B为直角顶点作椭圆的内接等腰直角三角形ABC,这样的直角三角形是否存在?若存在,请说明有几个;若不存在,请说明理由。
(本小题满分14分)
已知
,
为椭圆
的左、右顶点,
为其右焦点,
是椭圆
上异于
,
的动点,且
面积的最大值为
.
(Ⅰ)求椭圆
的方程及离心率;
(Ⅱ)直线
与椭圆在点
处的切线交于点
,当直线
绕点
转动时,试判断以
为直径的圆与直线
的位置关系,并加以证明.
若M(x,y)是椭圆x2+
=1上的动点,则x+2y的最大值为 .
到定点(2,0)与到定直线x=8的距离之比为
的动点的轨迹方程是 ( )
A
B.
C
D.
已知椭圆
和双曲线
有相同的焦点F
1
、F
2
,点P为椭圆和双曲线的一个交点,则|PF
1
|·|PF
2
|的值是
。
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总