题目内容
.(本小题满分12分)
设正数数列{an}的前n项和Sn满足.
(1) 求a1的值;
(2) 证明:an=2n-1;
(3) 设,记数列{bn}的前n项为Tn,求Tn.
设正数数列{an}的前n项和Sn满足.
(1) 求a1的值;
(2) 证明:an=2n-1;
(3) 设,记数列{bn}的前n项为Tn,求Tn.
解:(1)由得 ,则a1=1. (2)∵
∴an=Sn-Sn-1=-(n≥2),
整理得 (an+an-1)(an-an-1-2)=0
∵an>0, ∴an+an-1>0
∴an-an-1-2=0,即an-an-1=2(n≥2).
∴{an}是等差数列,∴an=2n-1.
(3)∵==
∴Tn==.
∴an=Sn-Sn-1=-(n≥2),
整理得 (an+an-1)(an-an-1-2)=0
∵an>0, ∴an+an-1>0
∴an-an-1-2=0,即an-an-1=2(n≥2).
∴{an}是等差数列,∴an=2n-1.
(3)∵==
∴Tn==.
略
练习册系列答案
相关题目