题目内容

18.已知几何体的三视图如图所示,则该几何体的表面积为(  )
A.4+$\sqrt{6}$B.6+$\sqrt{6}$C.2+2$\sqrt{2}$+$\sqrt{6}$D.2+2$\sqrt{3}$+$\sqrt{6}$

分析 根据几何体的三视图,得出该几何体是侧面垂直于底面的三棱锥,结合图中数据,求出它的表面积.

解答 解:根据几何体的三视图,得;
该几何体是如图所示的三棱锥,
且侧面PAC⊥底面ABC,
过点P作PO⊥AC,垂足为O,
则PO⊥平面ABC;
又PO=$\sqrt{3}$,AC=2$\sqrt{2}$,
∴S△PAC=$\frac{1}{2}$×2$\sqrt{2}$×$\sqrt{3}$=$\sqrt{6}$;
连接OB,则OB⊥AC,
又OB=$\sqrt{2}$,∴S△ABC=$\frac{1}{2}$×2$\sqrt{2}$×$\sqrt{2}$=2;
△PAB中,AB=$\sqrt{{(\sqrt{2})}^{2}{+(\sqrt{2})}^{2}}$=2,
PB=$\sqrt{{(\sqrt{2})}^{2}{+(\sqrt{3})}^{2}}$=$\sqrt{5}$,
PA=$\sqrt{{(\sqrt{2})}^{2}{+(\sqrt{3})}^{2}}$=$\sqrt{5}$
∴S△PAB=$\frac{1}{2}$×2×$\sqrt{{(\sqrt{5})}^{2}{-(\frac{2}{2})}^{2}}$=2,
且S△PBC=S△PAB
∴该几何体的表面积为S=S△PAC+S△ABC+2S△PAB=$\sqrt{6}$+2+2×2=6+$\sqrt{6}$.
故选:B.

点评 本题考查了利用空间几何体的三视图求表面积的应用问题,是基础题目.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网