题目内容

抛物线过焦点F的直线交抛物线于A、B两点,O为原点,若面积最小值为8。
(1)求P值
(2)过A点作抛物线的切线交y轴于N,则点M在一定直线上,试证明之。
        ⑵点在直线
(1)设出直线方程,注意斜率是否存在,然后直线方程与抛物线联立,消去整理得一元二次方程,利用根与系数的关系把面积用表示,分析的范围求出最小值为8,得的值;(2)由导数的几何意义求出过A点的抛物线的切线方程,得到切线与轴的交点,设出点,根据可找到点的横纵坐标用点的横纵坐标表示,就证出点M在一定直线上
抛物线的焦点 设直线方程为
    消去 
的等号成立  面积的最小值为                                  (7分)
    过A点的切线方程为
    设

          得
点在直线
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网